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• Motivations

• Current experimental constraints on two possible sterile neutrino models

• Which future experiments can find sterile neutrinos at high ∆m2?
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Theoretical Motivations

• Sterile neutrinos = neutrinos with no standard weak couplings

Michel Sorel, Columbia U. 2



2

Theoretical Motivations

• Sterile neutrinos = neutrinos with no standard weak couplings

• Proposed mechanisms to generate neutrino masses often involve adding right-
handed neutrinos to the Standard Model

• Light sterile neutrinos can be hard to find experimentally, but not theoretically!
Just pick your favorite theoretical direction. . .

Michel Sorel, Columbia U. 2



2

Theoretical Motivations

• Sterile neutrinos = neutrinos with no standard weak couplings

• Proposed mechanisms to generate neutrino masses often involve adding right-
handed neutrinos to the Standard Model

• Light sterile neutrinos can be hard to find experimentally, but not theoretically!
Just pick your favorite theoretical direction. . .

• Grand Unified Theories
Mohapatra, hep-ph/0107264, McKeller et al., hep-ph/0106121,. . .

• SuperSymmetry
Dvali et al., hep-ph/9810257, Arkhani-Amed et al., hep-ph/0006312,. . .

• Extra-Dimensions
Ioannisian et al., PRD63 073002, Ma et al., hep-ph/0006340,. . .
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Experimental Motivations

• There are three experimental hints pointing toward neutrino oscillations:

ν
–

µ→ν
–

e

νe→νX

νµ→νX

• Two-neutrino oscillation approximation:(
να

νβ

)
=

(
cos ϑ sin ϑ

− sin ϑ cos ϑ

) (
ν1

ν2

)
, ∆m2 = m2

2 −m2
1

• Oscillation probabilities:

Pνα→νβ
= sin2 2θαβ sin2(1.27∆m2L/E), α 6= β

Pνα→να = 1− sin2 2θαα sin2(1.27∆m2L/E)

• ∆m2
sol + ∆m2

atm 6= ∆m2
LSND ⇒ need more than three massive neutrinos?
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The LSND Result (ν̄µ → ν̄e)

Water target

Copper beamstop

Time

LSND Detector

LANSCE accelerator
800 MeV proton beam from

ν̄µ

ν̄e

ν̄e p → e+ n n p → d γ

• ν̄µ source from: π+ → µ+ νµ

↪→ e+ νe ν̄µ

• Eν = 20-53 MeV, Lν = 25-35 m

• Liquid scintillator detects both
Cherenkov and scintillation light
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The LSND Result (ν̄µ → ν̄e)

Water target

Copper beamstop

Time

LSND Detector

LANSCE accelerator
800 MeV proton beam from

ν̄µ

ν̄e

ν̄e p → e+ n n p → d γ

• ν̄µ source from: π+ → µ+ νµ

↪→ e+ νe ν̄µ

• Eν = 20-53 MeV, Lν = 25-35 m

• Liquid scintillator detects both
Cherenkov and scintillation light

• 3.8σ ν̄e excess:
〈P (ν̄µ → ν̄e)〉 = (0.264± 0.045± 0.067)%

• Lν/Eν distribution of the excess
(backgrounds in green,red, fit to
oscillation hypothesis in blue):
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If LSND is NOT due to oscillations. . .

• From the experimental point of view, there is no need to introduce active-sterile
neutrino mixing (even though it is still a possibility)
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∆m2 solar

∆m2 atm

1

2

3

νe

νµ

ντ

νs

ν 
m

as
se

s

 νe

νµ

ντ

 =

 Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

  ν1

ν2

ν3


A

AAK

Solar νe → νe, νe → νµ,τ

?

Atmospheric νµ → νµ, νµ → νe, νµ → ντ

�
�
�
�
��

Reactor ν̄e → ν̄e
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Uτ1 Uτ2 Uτ3

  ν1

ν2

ν3


A

AAK

Solar νe → νe, νe → νµ,τ

?

Atmospheric νµ → νµ, νµ → νe, νµ → ντ

�
�
�
�
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Reactor ν̄e → ν̄e

|U | =

 0.70− 0.87 0.50− 0.69 < 0.16
0.20− 0.61 0.34− 0.73 0.60− 0.80
0.21− 0.63 0.36− 0.74 0.58− 0.80


(Bandyopadhyay et al., PLB 559, 2003)
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If LSND is due to oscillations. . .
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If LSND is due to oscillations. . .

• CPT-conserving models, with sterile neutrinos:
Model: (2+2) (3+1) (3+2) ,etc.

νe

νµ

ντ

νs

ν 
m

as
se

s

∆m2 solar

∆m2 LSND

∆m2 atm

0

1

2

3

∆m2 solar

∆m2 LSND

∆m2 atm

1
2

3

4

∆m2 solar

∆m2 LSND

∆m2 atm

1

2

3

4

5

Michel Sorel, Columbia U. 6



6

If LSND is due to oscillations. . .

• CPT-conserving models, with sterile neutrinos:
Model: (2+2) (3+1) (3+2) ,etc.

νe

νµ

ντ

νs

ν 
m

as
se

s

∆m2 solar

∆m2 LSND

∆m2 atm

0

1

2

3

∆m2 solar

∆m2 LSND

∆m2 atm

1
2

3

4

∆m2 solar

∆m2 LSND

∆m2 atm

1

2

3

4

5

• CPT-violating models, with no sterile neutrinos:
(G. Barenboim, “Is nothing sacred? CPT
violation in neutrino physics”, this session)
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• CPT-violating models, with no sterile neutrinos:
(G. Barenboim, “Is nothing sacred? CPT
violation in neutrino physics”, this session)

∆m2 solar
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?

I will discuss experimental
constraints on these models

(work in collaboration with
J. Conrad, M. Shaevitz)
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Combined analysis of SBL experiments

• Short-baseline experiments on
1. νµ disappearance (CCFR84, CDHS)
2. ν̄e disappearance (Bugey, CHOOZ)
3. ν̄µ → ν̄e appearance (LSND, KARMEN)

probe the same ∆m2 range and the same matrix elements:

νe

νµ

ντ

νs

νs′...


=



Ue1 Ue2 Ue3 Ue4 Ue5 . . .
Uµ1 Uµ2 Uµ3 Uµ4 Uµ5

Uτ1 Uτ2 Uτ3 Uτ4 Uτ5

Us1 Us2 Us3 Us4 Us5

Us′1 Us′2 Us′3 Us′4 Us′5
. . .





ν1

ν2

ν3

ν4

ν5
...


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



ν1

ν2

ν3

ν4

ν5
...


• Only LSND demands Ue4Uµ4 6= 0, or Ue5Uµ5 6= 0, etc.

• Is LSND consistent with the upper limits on active-sterile mixing at high ∆m2

derived by the null short-baseline experiments (NSBL)?

• NSBL = Bugey + CHOOZ + CCFR84 + CDHS + KARMEN
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(3+1) models and SBL experiments
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(3+1) models and SBL experiments

νe

νµ

ντ

νs

ν 
m
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se

s
∆m2 solar

∆m2 LSND

∆m2 atm

1
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3

4

• Three parameters probed: ∆m2
41, Ue4, Uµ4 (SBL only: can assume ∆m2

21 = ∆m2
32 = 0)

• Oscillation probability:

P (ν̄µ → ν̄e) = 4U2
e4U

2
µ4 sin2(1.27∆m2

41L/E)

• Two-neutrino approximation is satisfied ⇒ define:

∆m2 ≡ ∆m2
41, sin2 2θµe ≡ 4U2

e4U
2
µ4
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Treat NSBL and LSND data sets separately
(3+1) case

10
-1

1

10

10 2

10
-4

10
-3

10
-2

10
-1

1
sin2 2θµe

∆m
2  (

eV
2 )

CL

90%
95%
99%

NSBL LSND

(3+1)

• NSBL and LSND data sets are only marginally consistent with each other
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Combine NSBL and LSND data sets
(3+1) case

• Assuming statistical compatibility of all SBL results, a joint analysis gives:

10
-1

1

10

10 2

10
-4

10
-3

10
-2

10
-1

1
sin2 2θµe

∆m
2  (

eV
2 )

CL

90%
95%
99%

NSBL + LSND

(3+1)

• Best-fit: ∆m2 = 23.8 eV 2, Ue4 = 0.13, Uµ4 = 0.22
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(3+2) models and SBL experiments
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(3+2) models and SBL experiments

νe
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• Six parameters probed: ∆m2
41, Ue4, Uµ4, ∆m2

51, Ue5, Uµ5

• More than one ∆m2 contributes to the oscillation probability:

P (ν̄µ → ν̄e) = 4(Ue4Uµ4 + Ue5Uµ5)(Ue4Uµ4 sin2 x41 + Ue5Uµ5 sin2 x51)− 4Ue4Uµ4Ue5Uµ5 sin2 x54

xji ≡ 1.27∆m2
jiL/E

• Use NSBL data to derive the upper limits on the ν̄µ → ν̄e probability averaged
over the LSND L/E distribution:

pLSND ≡ 〈P (ν̄µ → ν̄e)〉LSND

Michel Sorel, Columbia U. 11



12

Compare (3+2) and (3+1) models

• Allowed values for the LSND oscillation probability (δ = confidence level value):

(3+1)
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δ L
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Compare (3+2) and (3+1) models

• Allowed values for the LSND oscillation probability (δ = confidence level value):

(3+1)

10
-2

10
-1

1

0 0.1 0.2 0.3 0.4 0.5

pLSND (10-2)

1-
δ N

SB
L

10
-2

10
-1

1

1-
δ L

SN
D

(3+2)
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• Two sterile neutrino models fit SBL data significantly better

Michel Sorel, Columbia U. 12



13

Combine NSBL and LSND data sets
(3+2) case

• (∆m2
41, ∆m2

51) allowed region from joint NSBL+LSND analysis:

10
-1

1

10

10 2

10
-1

1 10 10
2

∆m41 
2 (eV2)

∆m
51

 2  (
eV

2 )

CL

90%
95%
99%

NSBL + LSND

∆m 51
 2  =

 ∆m 41
 2

(3+2)

• Best-fit:
∆m2

41 = 0.91 eV 2, Ue4 = 0.12, Uµ4 = 0.17, ∆m2
51 = 21.5 eV 2, Ue5 = 0.07, Uµ5 = 0.22
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Combine NSBL and LSND data sets
(3+2) case

• (∆m2
41, ∆m2

51) allowed region from joint NSBL+LSND analysis:
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∆m41 
2 (eV2)

∆m
51

 2  (
eV

2 )

CL

90%
95%
99%

NSBL + LSND

∆m 51
 2  =

 ∆m 41
 2

(3+2)

• Best-fit:
∆m2

41 = 0.91 eV 2, Ue4 = 0.12, Uµ4 = 0.17, ∆m2
51 = 21.5 eV 2, Ue5 = 0.07, Uµ5 = 0.22

- Is this in contradiction
with cosmology?
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Cosmology and massive neutrinos

• Standard cosmology (ΛCDM) assumes three active, massless, neutrinos, and
no lepton asymmetry

• Observations ∼ agree with predictions of standard cosmology:

1. Primordial Helium (and Deuterium) abundance
2. Amplitude and shape of large scale power spectrum

Michel Sorel, Columbia U. 14
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Cosmology and massive neutrinos

• Standard cosmology (ΛCDM) assumes three active, massless, neutrinos, and
no lepton asymmetry

• Observations ∼ agree with predictions of standard cosmology:

1. Primordial Helium (and Deuterium) abundance
2. Amplitude and shape of large scale power spectrum

• In the simplest picture, massive sterile neutrinos with significant mixing to
active neutrinos are expected to alter both these predictions, in disagreement
with data

Example: primordial He/H ratio Yp as a
function of the baryon-to-photon ratio
(Di Bari, astro-ph/0302433)
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Cosmology and massive sterile neutrinos (cont’d)

• Predictions of standard cosmology assume that sterile neutrino species are
present in the early Universe in the same abundances as the active species

Michel Sorel, Columbia U. 15
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Cosmology and massive sterile neutrinos (cont’d)

• Predictions of standard cosmology assume that sterile neutrino species are
present in the early Universe in the same abundances as the active species

• Several mechanisms have been proposed that would suppress the sterile
neutrino abundances in cosmology
(for a review, see: Abazajian, astro-h/0205238)

• Full oscillation formalism (multi-flavor, matter resonances, etc.) still missing
in the calculations
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Cosmology and massive sterile neutrinos (cont’d)

• Predictions of standard cosmology assume that sterile neutrino species are
present in the early Universe in the same abundances as the active species

• Several mechanisms have been proposed that would suppress the sterile
neutrino abundances in cosmology
(for a review, see: Abazajian, astro-h/0205238)

• Full oscillation formalism (multi-flavor, matter resonances, etc.) still missing
in the calculations

• Cosmological constraints on sterile neutrinos should be taken with caution,
and in any case complemented with terrestrial experiments (where the
interpretation of data is easier)
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Future sterile neutrino searches at high ∆m2

• The unitarity of the mixing matrix means that ∼ all of the mixing parameters
measurements constrain active-sterile mixing, at least indirectly:

• Improve limits on (νe → νs)/(νe → νµ,τ) at ∆m2
solar

(Example: next-generation, real-time pp solar neutrino experiments)

• Improve limits on (νµ → νs)/(νµ → ντ) at ∆m2
atm with LBL accelerator

experiments (see: H. Gallagher, “MINOS Experiment Update”, this session)

• Improve reactor limits on νe → νx over a wide ∆m2 range
(Example: expected sensitivity of next-generation experiments)

Michel Sorel, Columbia U. 16
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Future sterile neutrino searches at high ∆m2

• The unitarity of the mixing matrix means that ∼ all of the mixing parameters
measurements constrain active-sterile mixing, at least indirectly:

• Improve limits on (νe → νs)/(νe → νµ,τ) at ∆m2
solar

(Example: next-generation, real-time pp solar neutrino experiments)

• Improve limits on (νµ → νs)/(νµ → ντ) at ∆m2
atm with LBL accelerator

experiments (see: H. Gallagher, “MINOS Experiment Update”, this session)

• Improve reactor limits on νe → νx over a wide ∆m2 range
(Example: expected sensitivity of next-generation experiments)

• Direct searches at high ∆m2:

• Test νµ → νe signal at ∆m2
LSND: MiniBooNE

• Improve limits on νµ → νs, νµ → ντ at ∆m2
LSND with SBL accelerator experiments

(Example: νµ → νx sensitivity for FINeSE+MiniBooNE)

• ∆m2
LSND range is not known precisely ⇒ several SBL experiments help

Michel Sorel, Columbia U. 16
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Summary

• Sterile neutrinos can explain the LSND result (if due to oscillations), and might
explain the origin of neutrino masses
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Summary

• Sterile neutrinos can explain the LSND result (if due to oscillations), and might
explain the origin of neutrino masses

• Combining LSND with other oscillation results provides hints where to look

• Based on a combined analysis of SBL data, (3+1) models are marginally allowed

• (3+2) models: additional active-sterile mixing from a second massive sterile
neutrino describes existing SBL results without any “statistical stretches”

• Conclusive test of the LSND evidence for oscillations in 2005, with the
MiniBooNE νµ → νe result

• If LSND is confirmed, additional νµ → (νe, νµ, ντ) measurements at SBL
are very important to disentangle the neutrino mass and mixing pattern

Michel Sorel, Columbia U. 17
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ν̄e disappearance sensitivity of future reactor
experiments

Plot from: J. Link, “The future
of Neutrino Experiments at Nuclear
Reactors”, ACCF, Thursday session
(go back)

• See also: K. M. Heeger, “Reactor Neutrino Measurements of θ13”, NEU, this
session

Michel Sorel, Columbia U. 18
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νµ → νe appearance sensitivity in MiniBooNE

• T. L. Hart, “Neutrino Oscillation Search at MiniBooNE”, NEU, Tuesday
session

• MiniBooNE will address in a definite and independent way the LSND evidence
for ν̄µ → ν̄e oscillations

• definite: same Lν/Eν ratio as for LSND and
enough statistics to cover the LSND region at
the 5σ level

• independent: Eν = 0.3 − 1.5 GeV and
Lν = 540 m are both a factor of 10 larger than
LSND, resulting in very different backgrounds
to the oscillation search and systematics for
the neutrino flux and particle ID (go back)
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νe disappearance sensitivity with
MiniBooNE + FINeSE

Plot from: B. T. Fleming, J. Monroe
(go back)
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• M. O. Wascko, “Neutrino Physics at FINeSE”, NEU, this session
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